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T-shaped nets (three-coordinated nets with an angular metric, bond angles near 90°, 90°, 180°) are found in a
number of extended structures. We explore in this paper the geometrical and electronic consequences of a stricter
T-shape metric, where the distances between the vertices of the net are approximately equal and in the range of
a chemical bond. Every atom in such a net has a T-shaped environment. One can think of these nets as extensions
of BrF3 or of substructures of various extended tellurium compounds. Several construction principles are found
which allow an enumeration of a variety of one-, two-, and three-dimensional T-shape nets; not every three-
coordinated net lends itself to the stricter geometrical and distance metric. Not everything is possible; there are no
zero-dimensional T-nets, and none made entirely of three atom segments. Previous ideas on electron-rich multicenter
bonding lead to a simple way of calculating the magic electron counts for each net; these lie in the range of 6 to
6.67.

Introduction

Struck by the beauty of a T-shape net (see1) observed in
some coordination polymers published some years ago1

(related to a net of a hypothetical carbon allotrope we once
studied2), and the relationship we saw in it to the T-shape
motif found in electron-rich hypervalent bonding chemistry
(e.g. BrF3), we began thinking about such nets.

The T-shape nets are arbitrarily defined here as a subclass
of 3-coordinated3 nets in whicheVery point of the net has a
T-shape environment. The T-shape imposes a metric on a
three-coordinated graph; ideally each point of the net has

two 90° angles and one of 180°. Of course, this strict metric
constraint can be relaxed and will be in real structures. Until
we reach a point in our considerations where geometries are
free to relax, wherever we use the term “T-shape net” in
this paper we mean the ideal 90°, 90°, 180° net.

Recently some nets of this type have been described.4,5

These coordination polymers are formed by a metal center
linked with an organic spacer, generally a bidentate ligand.
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Scheme2 shows idealized versions of the different kinds of
nets known: (a) 1D ladder,4 (b) 2D brick4a,d,5, (c) a 2D
bilayer.4c,6

Our interest in the field grew as we imagined building
T-shape netsnot with spacers, but made just of main group
elements. What might be the magic electron counts7 associ-
ated with such nets? Aside from the nets shown in1 and2,
others are derivable from quite different starting points
already in the literature. Thus the Ce3Te22

8 and Ce4Te28
9

phases contain Te sublattices in which some Te atoms have
a T-shape environment.3 illustrates the Te sublattice in the
Cs3Te22 crystal. It is made up of small squares of Te atoms
linked by a series of 2-coordinated Te atoms. While the
2-coordinated linkage is electronically important, from a
topological point of view it can be removed. The sublattice
that results (right side of3) can then be described as a 2D
3-coordinated net characterized by an equal number of 4-
and 8-membered rings.

A metric can specify distances as well as angles. Implicit
in the idea of a T-shape net is the assumption that no more
than 3 neighbors can be at a “bonding distance” from a net
point. For instance the 2D brick (2b) and the 2D bilayer
(2c) nets arenot good T-shape structures for a net with a
main group element atom ateachvertex (and no “spacer”
in between, as in the nets known so far). This follows from
the imposition of a distance and angle metric. Without
consideration of distances one well might think of a network

such as2b and 2c. But the reality of bonding (e.g. in
molecular T-shaped BrF3, ClF3) points to a maximum bond
length differential of∼10% between the two potentially
different bonds in the T, and a small deviation of the ideal
90° angles at a point. As we mentioned, we assume in our
construction all equal bond lengths in the net, and 90° angles.
Given that, in hypothetical2b each point has not 3 but 4
neighbors at similar distances and in2c each point has 5
neighbors.

In general, we have at hand another, quite chemical,
metric, or “topochemical” constraint, a useful way to delimit
the number of network possibilities to be considered. Perhaps
it is worthwhile to spell out this topochemical constraint,
for we will use it often: If, as a result of translational
symmetry and the ideal T-shape constraint, twoVertices of
a hypothetical net come within a bonding distance (defined
as the length of the shortest line connecting twoVertices),
suchVertices will be considered bonded, and a line must be
drawn between them.

In this paper we will examine and classify the possible
T-shape nets for main group elements. Our second goal is
to calculate the optimum electron count for each net and to
obtain some qualitative criteria to judge the stability of the
T-shape nets. Before proceeding, it is useful to set out in
brief some concepts for characterizing the nets.

Gons and Vertices: The Classification of the
3-Coordinated Nets

A net is made up of points or vertices, joined by links
(bonds). A way to describe nets is in term of their circuits
(polygons, or, in a chemical language, rings) and the
coordination or number of linkages of the vertex (degree in
the graph theoretical terminology).10 We are interested in
uniform infinite lattice graphs, uniform meaning that each
vertex has the same degree (3 in our case). We divide the
T-shape nets into two categories: “planar” nets if the nets
lie in a Euclidean space plane; otherwise we call them
“nonplanar”.

For the 2D planar nets, we use in our paper the language
(and most conventions) of Wells. A net can be identified by
the number (n) of the smallest polygons of all independent
links. In the brick net (2b) the smallest rings are all hexagons,
while the net in3b is formed by two different kind of
squares, a 4-membered square (or 4-gon) and an 8-membered
square (or 8-gon). Note right away that we use the word
“square” as a geometrical descriptor andnot the equivalent
of “4-gon”. The ideal 4-gon is square, but so is an 8-gon
that will be of great interest to us.

The other quantity is the number (p) of links meeting at
each vertex. The notation is (q, p) whereq is then-gon size
(the number of edges making it up) andp was defined above.
The brick net (2b) is described as (6, 3) where 6 is the
number of edges of all the smallest rings and 3 is the degree
of the vertices.

(5) Gudbjartson, H.; Biradha, K.; Poirier, K. M.; Zaworotko, M. J.J. Am.
Chem. Soc.1999, 121, 2599.
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Henningar, T. L.; Zaworotko, M. J.New J. Chem.1998, 177.

(7) Papoian, G. A.; Hoffmann, R.Angew. Chem., Int. Ed.2000, 39, 2408.
(8) Sheldrick, W. S.; Wachhold, M.Angew. Chem., Int. Ed. Engl.1995,

34, 450 Kanatzidis, M. G.Angew. Chem., Int. Ed. Engl.1995, 34,
2109.

(9) Sheldrick, W. S.; Wachhold, M.Chem. Commun.1996, 607.

(10) (a) Wells, A. F.Three Dimensional Nets and Polyhedra; Wiley: New
York, 1977. (b) Wells, A. F.Further Studies of Three-dimensional
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If there is more than one kind of smallest circuit, as for
instance in the case of the net shown in3b, the symbol
becomes (nx.my.lz. ..., p) where x, y, z are the number of
circuits of lengthn, m, l. So the symbol for3b is (41.81, 3)
or (4.8, 3) if we drop the exponent when it is 1.

This representation is in general insufficient to identify
uniquely a net, so it may be also necessary to specify other
characteristic. Following the notation of Wells, these may
be Zt, the number of points in the smallest topological unit
cell, nx, the number of rings to which a vertex belongs, and
ny, the number ofn-gons to which a link belongs. Sometimes
even larger circuits must be specified.

In general, as shown by O’Keeffe,11,12 the topological
classification and the enumeration of the nets is still an open
and unresolved problem. A useful notation for the nonplanar
nets is the vertex symbol (also called long Schla¨fli symbol).
It records the shortest rings linking each kind of vertex in
the net. A 3-coordinated net has 3 different angles associated
with a vertex, and the symbol for the vertex has the general
formula (Q1A.Q2B.Q3C) where Q1, Q2, and Q3 are the
shortest “ring” size associated with the angle 1, 2, and 3
respectively andA, B, C are the number of the shortest ring.
“Ring” is meant here in a chemical way; in general it may
happen that the shortest circuit does not correspond to the
shortest ring, as shown in4. For thea angle, the 7-membered
circuit contains the shortcut 1-4, and so in this case the
shortest ring is the 8-membered one.

Also the vertex symbol is sometimes unable to differentiate
two networks and we have to considered other parameters,
such as the “coordination sequence”. The locally modified
program EUTAX helped us in the topological analysis of
the nets.13

For the sake of simplicity, we will use a code to identify
a network. The format of the code is “XD-qx”. The first
part, “XD”, refers to the dimensionality of the net; it can be
1D, 2D, or 3D for nets infinitely extended in one, two, or
three dimensions, respectively. In principle,XD could be
0D, but with a T building block it is not possible to make a
finite net. The “q” in the code is “p” (for planar) when the
net lies in a plane, or it can be “n” (for nonplanar) when the
net is nonplanar. The last letter “x” is just a counter, an
enumerating index.

We need to stress that our code is just a way for
enumeration of the nets we found, and there is no direct
relation with the mathematical topology of the nets. In
general, we can have nets with the same topological
description but with different arrangement in the space.

The Supporting Information to this paper gives for every
net discussed the unit cell constants, coordinates of points,
space group, densities, and vertex and Wells (when ap-
plicable) symbols.

1D Planar Net

Let us now begin to construct some ideal T-shape nets,
proceeding from one dimension to three. The simple ladder,
1D-p1 (see2a), is the only planar 1D T-shape net compatible
with our topochemical hypothesis. Though this is obvious,
it is useful to show the reasoning, for it will be applied soon
in a more complex setting.

We begin with a straight line, which incorporates the
necessary translational symmetry. The points in the straight
line (middle of5) are 2-coordinated and have to be linked
with another one. One option is to put the third point of each
T to the same side of the straight line (right of4). Let us
take a look at the environment of these atoms. The two
neighbors of each atom are at a bonding distance, which, by
the topochemical hypothesis, leads to a bond between them.
This is fine, we have a 1D T-shape net, the ladder.

An alternative, shown in5 (left), is to alternate the third
link as one translates along the line. But this leads to an
unacceptable geometrysa closure would be required with
two bonds twice as long as the original point separation along
the central line. There are also other possibilities, but all of
them lead to similar problems.

To stress again the importance of the topochemical
hypothesis in the generation of our nets, we show in6 another
hypothetical 1D solution. It actually is 4-coordinated; the
arrow points to the region where a bond is forced.

2D Planar Nets

2D 3-coordinated plane nets have been studied extensively
and elegantly by Wells,10,14as well as by others.15 Wells has

(11) O’Keeffe, M.; Hyde, B. G.Crystal Structures I. Patterns and
Symmetry; Mineralogical Society of America: Washington, DC, 1996.

(12) O’Keeffe, M.Z. Kristallogr. 1991, 196, 21.
(13) O’Keeffe, M. EUTAX, local modified PC version by D. M. Proserpio.
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developed a formalism for labeling and enumerating them.
He shows that the 3-coordinated 2D plane nets conform to
the following equation, where∑φn ) 1 andφn is the fraction
of the total number of polygons that aren-gons:

For instance, in the honeycomb net of graphite allφ’s are
zero exceptφ6 ) 1. In (4.8, 3), in the net made of squares
and octagons in scheme3b, φ4 ) 1/2 ) φ8. O’Keeffe showed
that eq 1 can be derived from the Euler relationship between
the number of vertices, the number of polygons, and the
number of edges (V + P ) E).15

In the sometimes complex argumentation that follows, it
is important to make explicit the constraints of the T-shape,
and a possible confusion in language. We will use consis-
tently the words 4-gon, 8-gon, 10-gon, etc. for polygons.
But the T-shape constraint dictates angles of 90° and 180°.
Thus the 8-gon built of T-shapes (and highern-gons) isneVer
the regular octagon, with all angles equal; only rectangle or
square-shaped 8-gons are possible in T-shape nets. Examples
are given in7.

We emphasize again that we use “square” as a geometrical
descriptor, not as equivalent to a 4-gon, though our 4-gon
is, in fact, a square. We can also have different shaped
polygons. As shown in7, the 12-gon can take on a square
as well as a rectangle geometry and the 14-gon can have
two different rectangular shapes. By the way,7 describes
all the possible planar shapes for 4-gon through to 14-gon,
assuming only 90° or 180°angles (as is required to build a
T-shape net). This will be important for the net generation
algorithms we will develop.

The Wells equation can be simplified in our case. With a
T-shape building block we can form only square or rectan-
gular circuits, since the angles can be only 90° or 180°. In
a rectangle or square the perimeter must ben times the length
of the repeating unit, because we impose the condition that

all the linkages have equal length. Furthermore, in a square
and a rectanglen is even (the opposite sides have to be of
the same length.). Equation 1 becomes

Also the term that represents the six-member ring in eq 2
has to be dropped, as a consequence of our topochemical
hypothesis. Only one kind ofplanar rectangle can be formed
with a six-member circuit, as may be seen from8a. But, as
shown in8b, the “topochemical” hypothesis makes one add
a link between points 2 and 5, and this transforms the six-
point rectangle into two four-point squares.

The final form of the eq 1 applicable to our T-shape nets
is

One consequence of eq 3 is that we cannot have a 2D
planar T-shape net with all polygons of one kind; also the
nets must contain at leastone4-member square. There are
an infinite number of solutions of eq 3. However, we are
interested in nets with a small number of nonequivalent
circuits and with a pattern of vertices that repeats periodically
with a “reasonably” small unit cell. In Table 1 we report the
nontrivial solutions of eq 3 fromm ) 2 to m ) 6 wherem
(order) is the highest denominator ofφn.

Let us describe the nets that correspond to these solutions.
The first one,2D-p1, is shown in9, and belongs to the (4.8,
3) family of nets, using the convention of Wells. This is the
only T-shape net we can build with only 4- and 8-gons. This
is important, because (as Wells showed14), without the
topochemical and angular metric conditions we impose, an
infinite number of (4.8, 3) nets can be constructed. The proof
is given in the Supporting Information.

We now show the nets associated with the other solutions
of eq 3, starting with the nets with only two kinds of gons.
For these solutions, there are two different ways for assembly
of the gons. The first assembly is shown in10. The nets
2D-p2, 2D-p3, 2D-p4, and 2D-p5 are characterized by
straight lines and ladders connecting them. The vectors in
the drawing indicate a unit cell.

(14) Wells, A. F.Acta Crystallogr.1968, B24, 50.
(15) O’Keeffe, M.; Hyde, B. G.Philos. Trans. R. Soc. London1980, 295,

553.

3φ3 + 4φ4 + 5φ5 + 6φ6 + 7φ7 + ... + nφn ) 6 (1)

Table 1. m “Order”: The Highest Denominator inφn; Z the Number of
Points in the Repeating Unit;φn the Fraction of the Total Number of
Polygons That Aren-Gons

m Z φ4 φ8 φ10 φ12 φ14 φ16 net type

2 4 1/2 1/2 2D-p1
3 6 2/3 1/3 2D-p2, 2D-p6
4 8 3/4 1/4 2D-p3, 2D-p7
5 10 3/5 1/5 1/5 2D-p10
5 10 4/5 1/5 2D-p4, 2D-p8
6 12 4/6 1/6 1/6 2D-p11
6 12 5/6 1/6 2D-p5, 2D-p9

4φ4 + 6φ6 + 8φ8 + 10φ10 + ... + 2nφ2n ) 6 (2)

4φ4 + 8φ8 + 10φ10 + ... + 2nφ2n ) 6 (3)
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In the second family of nets (see11), there are no more
straight lines, but a different assembly of the ladders. It may
be noticed that the2D-p1net is also a member of this family.
In fact, the other nets can be viewed as an expansion of the
8-gon square of the2D-p1 net.

The two nets obtained from the third solution of eq 3 are
shown in12. The2D-p10 lattice is a variation of the2D-p6
family. Ribbons containing 10-gons and ribbons containing
8-gons alternate in anABAB fashion. Obviously we can
obtain an infinite number of nets just varying the order of
the ribbons (i.e. inAABBsequence). The2D-p1, 2D-p3, and
2D-p11 nets are built using only squares.

As one looks at the totality of the nets generated so far, it
becomes clear that they may be all viewed as derived from
a simple square-planar grid through the removal of points.
This observation gave us another method for net generation
(how many ways are there of removing points from a square
net so as to leaveeachremaining vertex 3-coordinated?) as
well as a simple way for calculating the atom density of a
given structure.

Nonplanar Nets

Our starting point for the generation of 3D nets is the Wells
enumeration.10 He described in his classic and insightful
book10a30 3-coordinated nets with only one kind of polygon
and some others with 2 different kinds of circuits. Our idea
was to superimpose the ideal T-shape metric on Wells’s set.
It turns out that not all of the Wells nets can be reduced to
T-shape nets. Our own enumeration is not exhaustive, but it
aims to show all the possible T-shape nets that have small
unit cell, high symmetry, and high density. Important sources
for us, aside form the Wells books,10 were the book of
O’Keeffe and Hyde11 and the enumerations of Koch and
Fischer16 and of Bader, Klee, and Thimm.17

Nonplanar 1D Nets

In this section we deal with the nonplanar 1D structures.
The first 1D nonplanar net is strictly related to the1D-p2
family. To build the net, we first take a ribbon of the1D-p2
net with 4 straight lines and four ladders, as shown in13.

(16) Koch, E.; Fischer, W.Z. Kristallogr. 1995, 210, 407.
(17) Bader, M.; Klee, W. E.; Thimm, G.Z. Kristallogr 1997, 212, 553.
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Folding the ribbon into a tube, we obtain the1D-n1net (see
14). This folding in fact does not destroy the local T-shape
geometry of the points. This is a construction principle of
some utility.

Just varying the number of the straight lines and/or the
height of the ladder in between, we can generate an infinite
number of such tubes as well as an infinite number of 2D
and 3D nets (not shown here). The only constraint concerns
the number of the tube faces. It has to be even, otherwise it
is not possible to close the tube.

Main Group Element Nets to a T
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The tube1D-n1 is not a rigid one and can be deformed
from the square arrangement to a rhomboidal one, or even
(unrealistic) squashed flat. A material, built using this spatial
arrangement, should in principle show a negative compress-
ibility in one direction when hydrostatic pressure is applied.18

Another family of 1D nets can be built in this way. Let
us take two parallel straight lines, and connect them as shown
in 15.

While the vertices of the two straight lines are T-shape,
the other vertices are 2-coordinated. We can link the latter
with other points, as indicated schematically in structure15c.
With 4 such building blocks we can make the1D-n2 tube
(see16). In this family we can only build tubes with an even
number of building blocks. Also connecting in different ways
the building block15c, an infinite number of 2D and 3D
networks can be obtained.

Building Blocks

Before starting with the enumeration of more complex
structures, we think it is useful to introduce the concept of
building blocks. These will help us to describe the structures,
and the reader to visualize them. The building blocks are
geometrical entities that we found making up the 2D and
3D structures. Scheme17 introduces the building blocks.

The first building block, A, is a straight line of points with
bondsalternately along two different directions. The “B” and
the “C” straight lines are related to A; the bonds are repeated
after three and four turns, respectively. In general the building
blocks “A”, “B”, and “C” can define a crystallographic screw
axis only when the dihedral angles between the arms are
180°, 120°, and 90° in building blocks “A”, “B”, and “C”,
respectively. A simple 3-coordinated point is the building
block “D”. The “E” series of blocks are three different ways
of linking two T-shape points. The straight line A also can

be reduced to an infinite link of E blocks. The last block we
use is the “pinwheel” F.

The use of building blocks is a practical way of describe
and think of the T-shape structures, not a way to classify
them. This tool allows us to build T-shape nets from scratch
or reduce already described nets in the literature (see below).
Another advantage will be in the calculation of the electron
count of the nets. Now let us start with the description of
the other nets.

Nonplanar 2D Nets

A useful way of introducing the 2D nets is to divide them
into two categories: layered nets and nonlayered ones. The
first two nets (2D-n1and2D-n2) belong to the second type.
Both of them are built using A and E blocks, as highlighted
in Figure 1. The difference between the two nets shows up
in the projection along the cell axis. For2D-n1 the projection
shows a series of squares linked by a segment, for2D-n2
instead a condensation of rectangles.

The bilayer net2D-n3 can be described as formed by E′′
and D blocks as illustrated in Figure 1. The reader may have
also noticed that there are other ways to describe it (i.e. using
the C line and E′′ block or E′ and E′′ blocks). As an
alternative (see18), the net can be built from the addition
of 2-coordinated atoms between the points of a brick net

(18) Baughman, R. H.; Stafstro¨m, S.; Cui, C.; Dantas, S. O.Science1998,
279, 1522.
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(2b). The 2-coordinated points are linked with the 2-coor-
dinated points of a similar brick net rotated by 90°. Notice
that the shortest circuit in this net is a 6-gon. This is possible
because we are not any more in a plane. Nonplanar 6-gons
are consistent features of 2D and 3D T-shape nets.

Two other bilayers are2D-n4 and2D-n5. Both of them
can be assembled using the F square and E′′ blocks. It also
may be useful to consider them formed from two real Te6

sublattices of Cs3Te22 (see 19) connected through the
2-coordinated vertex. In2D-n4 the two planes have the same
direction while in the other case they are rotated.

Aside from their intrinsic interest, these two nets tell us
that two T-shape nets can be identical in connectivity as well
as topologically, but have quite a different geometrical
arrangement. And maybe these nets are not so remarkable.
Each component net (the Cs3Te22 net, 19) is characterized
by a 4-fold symmetry axis and no planes. The assemblage
of two such units generates two nets2D-n4 and2D-n5 that

are related topologically, but not identical. And they are not
superimposable in Euclidean space. Such should also be
distinct electronically, due to the different environment of
atoms in each.

When we started to analyze the nonplanar nets, we thought
that we could build all of them in a way analogous to the
planar nets, using a cubical six-coordinated grid and remov-
ing points from it. It is now obvious that this method can
generate some nets but not all, as2D-n4/n5, obvious
exceptions, tell us.

2D-n6 is a three-layer net, assembled using A lines and
points D. Another way to describe the net is the following:
The first and the third layers have the same pattern, but in
the final assembly they are shifted by one position in a
perpendicular direction. Parallel straight lines constitute the
middle layer. In this net all the smallest rings are 8-gons (as

Figure 1. A view of the 2D nets. The building blocks are highlighted with different colors.
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for 2D-n2). In the next section we show that this net is
closely related with the3D-n5 net.

The next net,2D-n7, is again a three-layer one. It is easy
to recognize in it the F square block, while the second
element (see20) can be considered formed by three D points
linked together. It shares many common features with the
2D-n4 and2D-n5 nets. As in these nets, the upper layer of
2D-n7, as well as the central layer (highlighted in red in
Figure 1), can be rotated with respect to the bottom one,
forming two other different geometrical rearrangements
without modifying the topological description of the net.
Moreover each square of the central layer can be rotated
independently of the other ones, obtaining an infinite number
of different and less symmetric nets.

The top view of the last net we present in this section,
2D-n8, shows the same pattern as the2D-p2 net. At a first
sight2D-n8 seems also related to the1D-n1 family of nets.
In reality, the linkages between the straight lines are made
using two20 building blocks bonded together as shown in
21.

A slight modification of2D-n8 is the three-layer2D-n9.
It is built joining together two planes of the type shown in
22 with the building blocks of21. Obviously the top view
of 2D-n9 is the same as that of2D-n8.

It is interesting to notice that2D-n7and2D-n8can expand
in the third direction. For2D-n7, a 3D net can be built
shifting up some of the building blocks of type F to connect
to an upper layer (not shown here). The same trick can be
used for the building block shown in21 for the 2D-n8 net
(see later3D-n16). In contrast to2D-n7, the growth of the

2D-n8net in the third dimension can be stopped by capping
the net with two planes of the type shown in22.

In principle, we can built nets with a number of layers
varying from 3 to 3n, where2D-n9 is the first member of
the series. Notice that if we use just one plane22 we can
obtain a semi-infinite net.

Infinite 3D Nets

The 3D nets we have found are shown in Figure 2. The
building blocks are highlighted with different colors to
facilitate the representation of the structure.

First of all, we want to show the nets built by using only
one type of block. The simplest one is the3D-n1 net. It is
the net from which all of this work began. The net can be
obtained by connecting, in anababsequence, two parallel
planes. In the first plane a set of A straight lines is parallel
to the crystallographica direction, a second set with theb
direction. Wells described this net as (10,3)-b.10a The
topology of this net is the same of the silicon atom sublattice
of the ThSi2 crystal. This net, as well as the1D-n1, can be
deformed from a tetragonal configuration to a rhombic one
without breaking the T-shape nature of the points.

The 3D-n2 net is closely related to the latter and was
described by Wells as (10,3)-c.10a Also in this case, this net
has the topology of the boron atom sublattice in the B2O3

net. In this case there are three planes of straight lines A,
each rotated by 120°. In Figure 2, the three sets of planes
are colored in green, red, and yellow. This net cannot be
deformed and is rigid.

The3D-n3 net is formed by assembly of C blocks. Three
sets of such lines are disposed perpendicularly to each other,
as shown in Figure 2. In this case, the three projections of
the net are equivalent, and the net is characterized by square
channels, alternating with straight lines of atoms. The
smallest circuit in this net is a six-membered one.

The last net we are able to build using only one type of
building block is3D-n4. It is assembled using only the F
blocks. The net is derived through a series of nonobvious
transformations of the (4.122) net described by Wells. The
density of3D-n4 (0.316) is the lowest of all the structures
we have presented in our enumeration.3D-n4 is also the
only 3D net without infinite lines.

The next four nets are built using the D block alternated
with A, B, and C blocks. Topologically,3D-n5 and3D-n6
come from the Wells (8,3)-c net. Their A building blocks
are connected in different way, as can be seen from thec
projection of the two nets (see Supporting Information).
Interestingly, the3D-n5 net can also be constructed by
alternating the two external layers of2D-n6 with two layers
of straight lines.

The 3D-n7 net is special. From the top, it appears to be
made up of equilateral triangles and irregular hexagons. The
B building blocks are at the vertices of a triangle. Interesting
3-fold screw axes are present as symmetry elements, but they
are not coincident with the building blocks and are located
at the center of the triangles. The dihedral angles between
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the arms of the B building block are 120°, 60°, and 120°,
respectively. It is quite incredible that this net may be derived
from the Wells (10,3)-a net, and consequently has the same
topological description. Also the silicon atom sublattice in
SrSi2 has this topology.

Using the 4-fold building block C, we built the3D-n8
net. At first sight, this net appears to be related to3D-n3,
especially looking at the projection along thec direction. In
both nets the smallest circuit is a 6-gon, and both are
characterized by square channels. On the contrary, the3D-
n8 has the channels only in thec direction and a different
topology description.

The next three nets (3D-n9, 3D-n10, and 3D-n11) are
assembled by putting together the square block F and B or
C lines. 3D-n9 is characterized by large square channels
along thec direction, while in3D-n10 there are large voids.
The importance of these structures is due to the presence of
a large number of triatomic straight segments, a feature that

will emerge as critical when we turn to electron counting.
In 3D-n11 the square blocks are joined together. This net
was obtained by modifying the net called 6(3)3-26 of ref
17. Obviously, as in the case of2D-n4 and 2D-n5, other
nets isomeric to3D-n9, 3D-n10, and3D-n11can be easily
obtained by rotating in a concerted movement some square
blocks or lines of square blocks.

All of the next four nets (3D-n12, 3D-n13, 3D-n14, and
3D-n15) are different combinations of the A and E blocks.
3D-n12 and3D-n13 were first obtained from the 6(3)3-26
net of ref 17, the other two just observing that it was possible
to combine the A and E blocks in two other ways. These
nets are closely related to the2D-n1 and2D-n2, since they
are assembled using the same kind of building blocks.

The last net we present here is3D-n16. It is built using
the building block19, and it is strictly related to the2D-n8
net. The projections along thea andb axes show the same
pattern as2D-p2, as we expect. Along thec axis the pattern

Figure 2. A view of the 3D nets. The building blocks are highlighted with different colors.
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is the same as2D-n3, and a closer look at3D-n16 shows
that this net is also the 3D expansion of2D-n3.

What We Do Not Have

Until now, we have described what we obtain applying
the topochemicalconstraint to the 3-coordinated nets. Here
we want to show what one cannot build.

First of all one cannot make a zero-dimensional solid with
all T-shape points. In 3-coordinated polyhedra, such as the
cube or the tetrahedron, the neighbors to a vertex do not lie
in one plane with the vertex, as for the T-shape.

We spent some time in trying to build a T-shape net
formed only by lines with three points in a row. The reasons
for our interest in such a net will be clear in the next section.
The lack of this kind of net is related to the characteristic of
the three-atomic line. From our attempts to build such a net,
it emerges that we have an abundance of linkages at the ends
of the lines and a shortage of link points in the middle of
the lines. This is obviously related to the fact that there are
2 points at the ends of the lines for each central point.

To overcome this difficulty we also tried to build a T-shape
dendrimer formed only by three atomic lines. This looks to
be impossible using only T-shape building blocks; after a
few generations, the dendrimer collapses for lack of space.

Up to here we have had fun (and a few tears) with
geometry. Now we want to start to populate the nets with
atoms and their electrons. To describe the electronic pro-
prieties of such nets we need to introduce some concepts of
the electron counting.

Electron Counting for T-Shape Nets

General.Our aim is to reason out the favored (some would
call them “magic”) electron count for every T-shape net. This
will be done qualitatively here, followed by a computational
analysis for a selected subset of the nets in a subsequent
paper.

The molecular prototype for T-shape bonding is the
relatively small set of T-shape molecules, such as BrF3 and
ClF3. These may be described in an ionic or covalent way;
at left in 23 is the ionic starting point (Br3+(F-)3), at right
the covalent one ((Br0)(F0)3).

Note the assumption of sp2,p hybridization at the Br. The
outcome in either case is a “normal” (dative or covalent)
Br-F bond along the vertical axis of the T, two lone pairs
at Br, and a three-center four-electron bond along the bar of
the T.

Actually there is not much s,p mixing in molecules of the
right side of the Periodic Table, once one leaves the first

row. So whereas the lone pairs in BrF3 might be represented
either as24aor 24b, as one goes down the Periodic Table,
the s,p representation24b is increasingly more appropriate.

Structural motifs which occur in our nets are not only the
T-shape but also, commonly, an infinite linear chain, as well
as finite linear chains 3, 4, 5, 6, ... atoms long. The electronic
structure of these has been analyzed elsewhere,7 but let us
review the argument here. Consider a chain of any length,
symbolically indicated in25. Under the assumption of little
s,p-mixing, each atom in the chain can be assigned 6
electrons to begin with, two each innpx, npy, and two inns
orbitals.

There remains thenpz orbital set. In26, we indicate the
orbital pattern (Hu¨ckel-type) of chains of length 3, 4, and 5.

We’ve learned that “thou shall not fill antibonding levels”
is not a bad guide for stability. This leads to a “good” electron
count of 4 for 3 orbitals, 4 for 4 orbitals, 6 for 5 orbitals,
etc. Or, in general,n + 1 for n ) odd,n for n ) even (where
n is the number of atoms). We can also express this result
in another way (this will be useful soon). The number of
electrons optimizing bondingper atomin the direction of a
line of n main group atoms is 1 ifn is an even number and
1 + 1/n if n is odd.

For the infinite system half of the band is filled. When
one adds thesen (or n + 1) electrons to the 6n in thens and
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px,y set, one comes to a preferred electron count of 7 per
main group element atom in the infinite linear chain. Or to
put into a tabular form we will find useful, per atom the
following occupation numbers are best (27) for an infinite
linear chain.

We will also need for ourAufbau one- and two-atom
fragments. For a singly bonded diatomic, we’d need 2
electrons along pz for 2 atoms. For a single atom, we have
a lone pair and a filled octet. In this way we make a
connection between electron-rich bonding with electron-
precise bonding.

One further essential concern needs to be discussed. While
the favored electron count per atom is 7 for the infinite chain,
and the same for every atom in the chain, what about the
distribution of electrons in the finite chain? Or to put it
another way, I3- (the prototypen ) 3 system) has 22 valence
electrons. How are they distributed?

Consider the four electrons of I3
- in the npz set,28.

In a Hückel calculationψ1 ) 1/2(ø1 - x2ø2 + ø3) andψ2 )
x1/2(ø1 - ø3). Thus the electron distribution inψ1 is 0.5,
1.0, 0.5 along the chain, and inψ2 1.0, 0.0, 1.0. The sum
(1.5, 1.0, 1.5 along the chain) places a-1/2 negative charge
at the ends of the chain.

Is this real? Sort of. If one does an extended Hu¨ckel
calculation19 in I3

-, one obtains charges of (-0.54, 0.08,
-0.54) along the chain. Better calculations give (-0.45,
-0.10,-0.45).20 Clearly this is an approximation on the way
to reality.

The Hückel treatment of a general odd-membered orbital
system places negative charges of-[1/(n - 2)] on every
other atom, starting from the end, as in29. For even-
membered chains withn electrons the atoms are uncharged.

In summary, the optimal electron count depends on the
length of the atom lines in the net. Chains with an even or
infinite number of atoms have one electron per atom in that
direction, while chains with an odd number have an electron
count of 1+ 1/n per atom wheren is the number of atoms of

the chain. A consequence is that nets with links with only
even or infinite chains have a favored electron count per
atom of six. Also the highest theoretical electron count
possible for the T-shape nets is 6+ 2/3. This will correspond
to a net formed only by triatomic lines, a net that we found
impossible to construct. In general the electron count will
be in the range 6 (included) to 6+ 2/3. We are now ready to
analyze some specific systems, again climbing a ladder of
dimensionality.

Electron Counting: A 1D Ladder. Infinite linear chains
of atoms and pair fragments form the ladder. So its electron
count is six, but let us obtain the optimum electron count
for the ladder in a different way. The approach we use is to
“retrotheoretically” decompose the ladder into smaller pieces.21

For these building blocks we know the electron count, and
the process can then be reversed; we will call this anAufbau.
Two possible retrotheoretical ways are shown in30 for the
simple ladder. In the first case, we break the ladder in steps,
in the second to lines.

We begin with theAufbau from pairs, really diatomic
molecules. The molecular model might be singly-bonded I2.
So the electron count per atom is 7 electrons. Consider
approaching such 7 electron diatomics so as to form the
ladder, as31 indicates; one should then get only repulsion
from the lone pairs impacting on each other. Optimum
bonding can be achieved by oxidizing each px lone pair by
one electron. So the final electron count per atom is 6
electrons.

We can also break the ladder into two linear chains. As
we saw, the best electron count per atom of a linear chain is
7 electrons. Bringing two such lines up to each other (32),
one would encounter repulsion, as shown in32, now between
two py lone pairs. To form the bond we have to oxidize each
py lone pair by one electron. Thus, as in the previous case,

(19) (a) Hoffmann, R.; Lipscomb, W. N.J. Chem. Phys.1962, 36, 2872.
(b) Hoffmann, R.; Lipscomb, W. N.J. Chem. Phys.1962, 37, 3489.

(20) For the calculation we used the hybrid DFT method (B3LYP) and
the lanl2dz basis set with the corresponding electron core potential.

(21) Ienco, A.; Papoian, G. A.; Hoffmann, R.J. Am. Chem. Soc.2001,
123, 2317.

s px py pz

occupation number 2 2 2 1

27
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the predicted electron count for the ladder is 6 electrons per
atoms.

The procedure detailed above is instructive. It indicates
that there may be different ways of fragmentation, and that
each way can be informative as to the electronic structure
of the net. On the other hand, theAufbauoutlined is system-
specific. Because we have to deal with a large number of
structures, we develop below an analytical method that is
more systematic.

First of all, we identify the repeating unit of the ladder.
This is the diatomic molecule, as shown in31. We also notice
that the two atoms in the diatomic molecule are equivalent
by symmetry. An inversion point relates them.

So we have to analyze only one atom. Let us first define
a local axis system for the atom, indicated in33 asx′ and
y′. Thex′ axis is chosen parallel to the vertical part of the T,
and they′ axis along the bar of the T. One reasonable
assumption, as we mentioned above, for late main group
element nets is that there is no s,p mixing in them. We assign
a full two electrons to the s orbitals. Next we have to decide
how many electrons to assign to the various p orbitals.

Each atom belongs to a straight line in thex direction, to
a line of two elements in they direction, and has no neighbor
in the z direction. The corresponding electron counts
optimizing bonding are 1 electron for the px′ and the py′

orbitals and 2 electrons in the pz′ orbitals. This is shown in
tabular form in34. In total, the electron count per atom is 6
electrons.

In general, to obtain the electron count (ECnet) per atom
of the net, the electron count of each atom (ECi) has to be
multiplied by the multiplicity of the atom in the unit cell
(mi) and divided by the total number of atoms in the unit
cell (ntot) as shown in eq 4.

Electron Counting: 2D Planar Nets. The optimal
electron count for the various planar 2D nets is given in Table
2. Most of them have an electron count of 6 electrons, as
the number of atoms of all chains in the nets is even or
infinite. Before proceeding, we want to analyze in detail a
case which does not give an electron count of 6 electrons.
So we choose the2D-p2 net. Its retrotheoretical decomposi-
tion is shown in35.

As we did for the ladder, we want to analyze two different
ways of cutting the net. In the left side of35, the decomposi-
tion leads to a series of linear infinite chains and pairs of
atoms, in the right side only triatomic units. In the first case,
the electron count for the infinite lines and for the diatomic
units is 7. When we construct the net by bringing the frag-
ments together, for each triatomic link formed, we have 3
orbitals filled by 6 electrons (see36). To minimize repulsion,
we need to remove 2 electrons for each triatomic link, or
2/3 electron per atom. So the final electron count per atom is
7 - 2/3 or 6 + 1/3.

For the other decomposition, the model for the triatomic
molecule is I3- with an electron count per atom of 7+ 1/3.
In this case we form two different types of linkages, a single
bond and an infinite chain. To form the bonds in both cases,

s px′ py′ pz′ total

occupation number 2 1 1 2 6

34

Table 2. Some Topological and Electronic Proprieties of the Planar 2D
Nets

net symbol electron count lines

2D-p1 (4.8, 3) 6 4
2D-p2 (42.10, 3)-a 6+ 1/3 ∞, 3, 2
2D-p3 (43.12, 3)-a 6 ∞, 4, 2
2D-p4 (44.14, 3)-a 6+ 1/5 ∞, 5, 2
2D-p5 (45.16, 3)-a 6 ∞, 6, 2
2D-p6 (42.10, 3)-b 6 6, 4, 2
2D-p7 (43.12, 3)-b 6 8, 4, 2
2D-p8 (44.14, 3)-b 6 10, 4, 2
2D-p9 (45.16, 3)-b 6 12, 4, 2
2D-p10 (43.8.10, 3) 6+ 1/5 5, 4, 2
2D-p11 (44.8.12, 3) 6+ 1/3 5, 2

ECnet )

∑
i)1

ntot

(mi ECi)

ntot

(4)
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one electron for each px orbital has to be removed (see37).
So the final electron count per atom is again 6+ 1/3.

We also want to illustrate how to obtain the electron count
using the analytical method. The unit cell for the2D-p2 is
shown in38.

The planar group isc2mm, and in the unit cell there are
12 atoms. There are 2 types of atoms. The first one, “a”, is
on the linear chain with a multiplicity of 8, and the second
one, “b”, is in the middle point of the triatomic line with a
multiplicity of 4. To calculate the electron count we use the
atoms indicated in38. Notice also how the local Cartesian

axes are differently oriented with respect to the unit cell axes,
as a consequence of the different orientation of the T.

As shown in 39, the s and pz′ orbitals of “a” host 2
electrons each (lone pairs), and the px′ orbital, located on
the linear infinite chain, has 1 electron. The py′ orbital is on
one terminal of the triatomic line, and so it is filled optimally
with 1 + 1/3 electrons. For the point “b”, the x direction is
along the triatomic line, so the px′ orbital has 1+ 1/3 electrons,
while the py′ is filled with only one electron (the electron
count for a pair of atoms). Applying eq 4, we obtain again
an electron count per atom of 6+ 1/3.

This net may well deform. The bond between two adjacent
atoms of type “b” is single, so it is stronger with respect to
the corresponding bonds in the linear chain and it will try to
form a shorter bond. This may lead to a trapezoidal structure
(see40a) or to a series of rectangular units (see40b). The
same problem may also be common for the other 2D nets
of the same family (2D-p3, 2D-p4, 2D-p5, ..., etc.), as well
as in the other nets, when a single bond is close and parallel
to a hypervalent linkage. On the contrary, the2D-p1 net
seems not to be affected by a deformation as in40a; all the
bonds are symmetry equivalent, but an elongation of the
inter-square with respect to the square bonds can occur.

A more detailed analysis of the problem will be presented
separately. We now want to introduce the electron counting
for the nonplanar nets.

Electron Counting: Nonplanar Nets.Table 3 shows the
electron count for the nonplanar nets. The highest electron

atom type multiplicity s px′ py′ pz′ total

a 8 2 1 1+ 1/3 2 6 + 1/3
b 4 2 1+ 1/3 1 2 6+ 1/3

EC2D-p2 )
8(6 + 1/3) + 4(6 + 1/3)

12

39
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count we have is 6+ 1/2 for 2D-n7, 3D-n9, 3D-n10. These
nets share interesting features, such as the presence of a high
number of squares. And they are obviously related. The2D-
n8 and 3D-n16 nets have a slightly lower electron count
(6 + 3/7 or 6.43). Their strictly related2D-n9 net has an
electron count of 6.40 while the2D-n3 net is lower due the
higher number of straight lines.

In general, nets with similar geometric characteristics and
formed by the same kind of building blocks have equal

electron count. This is true for the series3D-n1, 3D-n2, and
3D-n3 (all the latter have linear chains connected together)
as well as for2D-n1, 2D-n2, 3D-n12, 3D-n13, 3D-n14, and
3D-n15 (again linear chains connected by the E building
block). Interestingly, we can also make a relationship
between the1D-n2 and the2D-n6, 3D-n5, 3D-n6, 3D-n7,
and3D-n8. They are built using linear chains and building
block D. In contrast, there are no evident common features
between2D-n3 and conformers2D-n4 and2D-n5. Also the
3D-n11 net is unique, while the1D-n1 net is obviously
related with its parent2D-p2.

Concluding Remark

With this we end the first step in a fascinating geometrical
and electronic journey through T-shape nets. The geometries
we generate may be used to classify linker-spaced molecular
nets that do exist. These nets, however, are not necessarily
subject to the topochemical constraint we have imposed in
our enumeration. So they may show additional topologies.
No examples of such nets entirely composed of main group
atoms exist. Yet.
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Table 3. Some Topological and Electronic Proprieties of the
Nonplanar Nets

net type electron count lines

1D-n1 binodal 6+ 1/3 ∞, 3, 2
1D-n2 trinodal 6+ 1/4 ∞, 3, 2

2D-n1 binodal
6 ∞, 4, 2

nonlayered

2D-n2 binodal
6 ∞, 4, 2

nonlayered
2D-n3 trinodal 6+ 3/10 ∞, 3, 2
2D-n4 binodal 6+ 3/10 5, 2
2D-n5 same as2D-n4 6 + 3/10 5, 2
2D-n6 trinodal 6+ 1/4 ∞, 3, 2
2D-n7 tetranodal 6+ 1/2 5, 3
2D-n8 hexanodal 6+ 3/7 ∞, 3, 2
2D-n9 decanodal 6+ 2/5 ∞, 3, 2

3D-n1 ThSi2 6 ∞, 2
3D-n2 B2O3 6 ∞, 2
3D-n3 6.6.143 6 ∞, 2
3D-n4 4.122.122 6 4
3D-n5 trinodal 6+ 1/4 ∞, 3, 2
3D-n6 same as3D-n5 6 + 1/4 ∞, 3, 2
3D-n7 SrSi2 6 + 1/4 ∞, 3, 2
3D-n8 trinodal 6+ 1/4 ∞, 3, 2
3D-n9 binodal 6+ 1/2 ∞, 3
3D-n10 binodal 6+ 1/2 ∞, 3
3D-n11 trinodal 6+ 1/3 ∞, 4, 3
3D-n12 binodal 6 ∞, 4, 2
3D-n13 same as3D-n12 6 ∞, 4, 2
3D-n14 trinodal 6 ∞, 4, 2
3D-n15 trinodal 6 ∞, 4, 2
3D-n16 trinodal 6+ 3/7 ∞, 3, 2
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